New multivalued fixed point results in cone b--metric spaces
نویسندگان
چکیده
منابع مشابه
New multivalued fixed point results in cone b-metric spaces
In this paper, we give a fixed point theorem for multivalued mappings in a cone b-metric space without the assumption of normality on cones and generalize some attractive results in recent literature. c ©2016 All rights reserved.
متن کاملNew fixed and periodic point results on cone metric spaces
In this paper, several fixed point theorems for T-contraction of two maps on cone metric spaces under normality condition are proved. Obtained results extend and generalize well-known comparable results in the literature.
متن کاملFixed point theorems for multivalued maps in cone metric spaces
* Correspondence: shcho@hanseo. ac.kr Department of Mathematics, Hanseo University, Chungnam 356706, South Korea Full list of author information is available at the end of the article Abstract The aim of this article is to generalize a result which is obtained by Mizoguchi and Takahashi [J. Math. Anal. Appl. 141, 177-188 (1989)] to the case of cone metric spaces. MSC: 47H10; 54H25.
متن کاملCommon fixed point of multivalued graph contraction in metric spaces
In this paper, we introduce the (G-$psi$) contraction in a metric space by using a graph. Let $F,T$ be two multivalued mappings on $X.$ Among other things, we obtain a common fixed point of the mappings $F,T$ in the metric space $X$ endowed with a graph $G.$
متن کاملCoincident point and fixed point results for three self mappings in cone metric spaces
In this attempt we proved results on points of coincidence and common xed points for three selfmappings satisfying generalized contractive type conditions in cone metric spaces. Our results gen-eralizes some previous known results in the literature (eg. [5], [6])
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonlinear Sciences and Applications
سال: 2016
ISSN: 2008-1901
DOI: 10.22436/jnsa.009.06.05